On Elliptic Diophantine Equations That Defy Thue's Method: The Case of the Ochoa Curve

نویسندگان

  • Roel J. Stroeker
  • Benne de Weger
چکیده

1991 Mathematics Subject Classi cation. Primary: 11D25; Secondary: 11G05, 11Y50

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diffie-Hellman type key exchange protocols based on isogenies

‎In this paper‎, ‎we propose some Diffie-Hellman type key exchange protocols using isogenies of elliptic curves‎. ‎The first method which uses the endomorphism ring of an ordinary elliptic curve $ E $‎, ‎is a straightforward generalization of elliptic curve Diffie-Hellman key exchange‎. ‎The method uses commutativity of the endomorphism ring $ End(E) $‎. ‎Then using dual isogenies‎, ‎we propose...

متن کامل

The new protocol blind digital signature based on the discrete logarithm problem on elliptic curve

In recent years it has been trying that with regard to the question of computational complexity of discrete logarithm more strength and less in the elliptic curve than other hard issues, applications such as elliptic curve cryptography, a blind  digital signature method, other methods such as encryption replacement DLP. In this paper, a new blind digital signature scheme based on elliptic curve...

متن کامل

On a Few Diophantine Equations, in Particular, Fermat’s Last Theorem

This is a survey on Diophantine equations, with the purpose being to give the flavour of some known results on the subject and to describe a few open problems. We will come across Fermat’s last theorem and its proof by Andrew Wiles using the modularity of elliptic curves, and we will exhibit other Diophantine equations which were solved à la Wiles. We will exhibit many families of Thue equation...

متن کامل

S-integral Solutions to a Weierstrass Equation

The rational solutions with as denominators powers of to the elliptic diophantine equation y x x are determined An idea of Yuri Bilu is applied which avoids Thue and Thue Mahler equations and deduces four term S unit equations with special properties that are solved by linear forms in real and p adic logarithms Introduction In a recent paper SW my colleague R J Stroeker and I determined the com...

متن کامل

Efficient elliptic curve cryptosystems

Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Experimental Mathematics

دوره 3  شماره 

صفحات  -

تاریخ انتشار 1994